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Abstract. A quantum theory for the dc current induced by a surface acoustic wave (the
acoustoelectric current) in a uniform quasi-one-dimensional quantum channel has been worked
out. In long ballistic channels, giant oscillations of the acoustoelectric current were observed.
According to the theoretical predictions (Gurevichet al 1996 Phys. Rev. Lett.77 3881), in a
perfect uniform channel a finite acoustoelectric current exists only if the acoustic frequency
exceeds the specific threshold value which is determined by the momentum and energy
conservation laws. However, a finite current has been clearly observed well below the threshold.
In the present paper, we show that electron scattering against a random short-range potential
leads to an additional backscattering, as well as to a smearing of the momentum conservation
law. As a result, a finite current appears well below the threshold acoustic frequency. The
analysis is performed using the Keldysh non-equilibrium Green’s function technique.

1. Introduction

The interaction between a surface acoustic wave (SAW) and a two-dimensional electron
gas (2DEG) in mesoscopic conductors has gained considerable attention during the last few
years.

One way to investigate the interaction is to observe its influence on the propagating
acoustical wave. The transfer of energy and quasi-momentum from the SAW to the electron
gas results in a sound attenuation, as well as in a renormalization of the sound velocity [1–
5]. It is thus possible to investigate the response of a 2DEG to ac strains and, in the case of
piezoelectric interaction, to ac electric fields, without contacts being attached to the sample.

Another method is to study theacoustoelectric effect, which is due to the SAW-induced
electron drag [6–10]. In a closed electric circuit, the momentum transfer leads, in particular,
to a dc current through the conductor which in the simplest situation is proportional to the
SAW intensity. Alternatively, if the circuit is open, a dc voltage is induced across the
sample.

Shilton et al [11] observed experimentally the acoustoelectric current through aquasi-
one-dimensional quantum channel(figure 1) defined in a GaAs–AlGaAs heterostructure
by a split-gate depletion technique. The channel clearly showed (the familiar) quantized
conductance [12, 13] in units of 2e2/h. Contrary to what one might expect, the
acoustoelectric current was not quantized, but showed insteadgiant quantum oscillationsas
a function of the gate voltage. The acoustoelectric current had maxima at the steps between
the conductance plateaus.
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Figure 1. A schematic diagram of the experiment performed to measure the acoustoelectric
current in a quantum wire.

The results [11, 14] were understood under the assumption that the major contribution
to the SAW phonon drag on electrons takes placeinside the quantum channel. In the case
of a piezoelectric coupling, this assumption is justified, since the coupling is significantly
screened in the wide regions (leads) because of the large conductance of the 2DEG. However,
the screening is strongly suppressed inside the narrow 1D channel if its width is not much
larger than the Bohr radius. Indeed, if the major interaction were taking place in the 2DEG
reservoirs, a ‘phonon wind’ created in the leads would manifest itself as an additional
electric field, leading to currentsteps[15].

The explanation suggested in references [11, 14] was based on the semi-classical
Boltzmann equation. In parallel, a quantum theory for a perfect uniform channel has been
developed [16]. As was shown in reference [16], the acoustoelectric current in a uniform
ballistic channel has a cut-off atq = qth ≡ 2m∗s/h̄, whereq is the phonon wave vector,s
is the sound velocity, andm∗ is the effective electron mass. In the region whereq < qth,
corresponding to the conditionω < ωth = 2m∗s2/h̄ for the SAW frequency,backscattering
is forbidden by the conservation laws. As a result, no acoustoelectric current is induced.

On the other hand, in the experiments [11, 17] the inequalityω < ωth was met, but the
oscillations were clearly observed. We believe that there are two reasons for the absence
of a sharp cut-off, namely, (i) acoustically induced transitions between the propagating
and reflecting modes near the edges of the channel, and (ii) impurity scattering inside the
channel. The first reason was extensively discussed in connection with the photoconductance
of ballistic channels [18], as well as in connection with the acoustoelectric effect [19] (see
also below). The purpose of the present article is to work out a quantum theory of the
acoustoelectric effect which allows for the finite relaxation rates originating from impurity
scattering. The scattering against a short-range (in comparison to the channel’s length)
random impurity potential leads to anelectron level broadeningand, consequently, to a
smearing of the conservation laws. This quantum effect overlaps the effect that can be
allowed for within the framework of the Boltzmann-like equation, namely, an additional
relaxation of the acoustically induced non-equilibrium electron distribution. In this paper,
we focus on those effects in a uniform channel. To take account of both effects on an equal
footing, the non-equilibrium Green’s function formalism [20, 21] is appropriate.

2. The model

We consider a uniform quantum wire of lengthL (figure 1), parallel to thex-axis. The
SAW also propagates along thex-axis. For convenience, the zero of thex-coordinate has
been chosen to lie at the middle of the conductor. It is assumed that the coupling takes
place only inside the channel.
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The model of course needs few modifications to reproduce all of the details for realistic
experimental systems.

First, there is still left a finite electron–SAW coupling in the leads. This coupling
produces a ‘phonon wind’ for the electrons [15]. Consequently, finite current steps can
appear, which overlap with the giant oscillations pattern originating from the intra-channel
coupling. However, in the case of apiezoelectriccoupling, the ac piezoelectric fields are
significantly screened in the 2D leads in comparison with the quasi-1D wire region. Indeed,
the screening length in a 2DEG is of the order of the Bohr radiusaB = εh̄2/m∗e2, and if
the dimensions of the 2D leads are much larger thanaB , then the interaction is effectively
screened out. At the same time, the width of the wire might be comparable toaB , in which
case the electric field penetrates the channel, and the SAW–electron interaction inside the
channel is much stronger than that in the leads. In this case, the current steps are weak
compared to the giant oscillations.

Second, there is of course no abrupt drop in the effective coupling strength at the
entrance and exit of the uniform 1D wire region. Rather, one can expect a smooth decrease
of the effective coupling at the crossover between the 1DEG wire and the 2DEG leads.
Important entrance and exit effects appear due to the finite coupling in those regions. In
particular, the scattering of electrons between propagating and non-propagating modes in
those regions may lead to additional oscillations in the acoustoelectric current [18, 19].
These effects are neglected in the present work. What we discuss is actually a model of
a long, uniform quantum wire of lengthL, connecting two wide leads and subjected to a
random impurity potential with a correlation length much less thanL.

In the uniform wire model, the electronic states are described as products of wave
functions which represent motion in longitudinal and transverse directions. The longitudinal
motion (along thex-axis) is represented by plane waves with the wave vectork. The
transverse motion (along they-axis) is quantized, the mode being described by a discrete
quantum numbern. For convenience, we label the states by the quantum numberα = (n, k).
The electronic stationary states and the corresponding energy levels are thus

9α(r) = L−1/2eikxχn(y)

Eα = En + Ek = En + h̄2k2/2m∗.
(1)

The actual form ofEn depends on the properties of the external potential which confines
the electrons in they-direction. The model Hamiltonian of the electron system is given by

H = Hel+HI = Hel+Hel−ph+Hel−i (2)

with the unperturbed Hamiltonian

Hel =
∑
α

Eαc
†
αcα (3)

wherec†α (cα) is the creation (annihilation) operator for an electron in the stateα. Interaction
with phonons and impurities is in this picture treated as a perturbation. The electron–phonon
coupling is represented by [22]

Hel−ph =
∑
α,β,q

Wαβ(q)(bq + b†−q)c†αcβ (4)

where

Wαβ(q) = w(q)〈α|eiq·r|β〉 (5)

is the electron–phonon interaction matrix,w(q) is the coupling factor, which depends on
the type of phonon, andb†q (bq) is the creation (annihilation) operator for a phonon with
wave vectorq.
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In the case of piezoelectric interaction, the coupling factor is given by an expression of
the type [23]

w(q) = Mλ(q̂)(h̄/2ρV0ωq)
1/2 (6)

whereρ is the mass density,V0 is the normalization volume, andMλ(q̂) is the piezoelectric
coupling tensor, which depends on the propagation directionq̂ ≡ q/q and polarizationλ of
the phonons. In general, one has to sum over the phonon branches and wave vectorsq in
the Hamiltonian (4). In our problem, however, the propagating SAW has a definite constant
polarization and direction. Consequently, the interaction tensor can be taken as a constant,
Mλ(q̂)→ M, and (4) applies perfectly as our model Hamiltonian.

For the deformation potential coupling mechanism, the factor (6) has to be replaced by

w(q) = D(h̄q2/2ρV0ωq)
1/2 (7)

whereD is the deformation potential constant.
The frequency dependences of the piezoelectric and the deformation coupling mech-

anisms are different. For a relatively small SAW frequency (∼3 GHz, as in the experiments
in references [11, 17]), the piezoelectric interaction definitely dominates. However, for
higher frequencies one can expect the deformational coupling to play an increasingly
important role. In our further calculations we only consider the piezoelectric coupling.

The coupling to the random distributed impurities can be represented by the model
Hamiltonian [22]

HI = 1

V0

∑
q,α,β,i

e−iq·Ri Vαβ(q)c
†
αcβ (8)

whereRi is the position of theith impurity centre,

Vαβ(q) = 〈α|eiq·r|β〉 =
∫

d3r e−iq·rV (r) (9)

andV (r) is the potential of one impurity situated atr = 0.
In the calculation of quantum statistical averages, the averages are taken over the

impurity centres’ positions [24], as well as over the quantum states and the thermal
distributions between the states. One should, however, keep in mind that in a very small
mesoscopic device, it is possible that only a very few impurity centres are located inside the
conductor. The electronic transport in the channel may then strongly depend on the exact
configuration of those potentials. In this sense, the relatively long-range impurities act as a
modification of the uniform channel geometry adopted as our initial model. Backscattering
effects of the type discussed in reference [18] for the case of the entrance and the exit
regions may therefore also be important inside the uniform wire. This type of modification
is of course neglected in our model with a short-range random potential.

3. Theoretical analysis

To calculate the acoustoelectric current in the quantum wire when level broadening is taken
into account, we apply the Keldysh non-equilibrium Green’s function method. For our
analysis, the triangular representation [21] is used, in which case the electron (G) and
phonon (D) Green’s functions, as well as the corresponding electron self-energy (6), are
represented by 2× 2 matrices of the type

F̂ =
(
FR FK
0 FA

)
. (10)
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Here FR,A,K are the retarded, advanced, or so-called Keldysh electron (phonon) Green’s
components. In real space and time, the respective electron Green’s functions are defined
as [20, 21]

GR(ξ1|ξ2) = −iθ(t1− t2)〈{9̂(ξ1), 9̂
†(ξ2)}+〉

GA(ξ1|ξ2) = iθ(t2− t1)〈{9̂(ξ1), 9̂
†(ξ2)}+〉

GK(ξ1|ξ2) = −i〈{9̂(ξ1), 9̂
†(ξ2)}+〉

(11)

whereξi ≡ (ri , ti), 9̂(r, t) are the electron field operators

9̂(r1, t) =
∑
α

9(r)cα(t) (12)

while {Â, B̂}± = ÂB̂ ± B̂Â. The phonon Green’s functions are defined in a similar way
with the replacement of the electron field operators by the phonon ones:

φ̂(r, t) = 1√
V0

∑
q

[
bq(t)+ b†−q(t)

]
eiq·r (13)

and the anti-commutators{ }+ by the commutators{ }−. We assume that the phonons have
a linear dispersion,ωq = sq, wheres is the sound velocity.

Let us now change to a representation for the electron Green’s functions which is
convenient for our problem. First, we note that both the SAW and the electrons propagate
along thex-direction. Consequently, the perpendicular motion is entirely described by the
transverse wave functionsχn(y). Secondly, we are interested in the stationary current under
the conditions of a stationary phonon beam. Consequently, a Fourier transformation with
respect to the time differencet1 − t2 can be performed. Third, we choose the Wigner
representation to describe the motion in thex-direction, takingX = (x1 + x2)/2 as the
centre-of-mass coordinate andx = x1− x2 as the relative one. Finally, a Fourier transform
with respect tox is performed, transforming the electron Green’s functions tok-space.
According to this new representation, the electron Green’s functions are given by

Ĝ(α,X, ε) = h̄−1
∫

dx dy1 dy2 dt e−ikx+iεt/h̄χ∗n (y1)χn(y2)

× Ĝ(X + x/2, y1, t |X − x/2, y2, 0). (14)

Phonons are not confined by the split-gate structure. For simplicity, we assume the phonons
to be three dimensional and moving in a homogeneous space. In this space, the phonon
Green’s functions are dependent only on the differencesr ≡ r1 − r2 and t ≡ t1 − t2, and
can be entirely described by the wave vectorq and energyε as

D̂(q, ε) = h̄−1
∫

d3r dt e−iq·r+iεt/h̄D̂(r, t). (15)

In the above representation for a system close to equilibrium, the electron and phonon
Green’s functions reduce to

GR(α, ε) = G∗A(α, ε) = [ε − Eα + µ−6R(α, ε)+ iδ]−1

GK(α,X, ε) = −i[1 − 2f (X, ε)]A(α, ε)

DR(q, ε) = D∗A(q, ε) =
∑
±

[ε ± h̄ωq + iδ]−1

DK(q, ε) = −2π i
∑
±

[
1+ 2N±q

]
δ(ε ∓ h̄ωq)

(16)
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whereA(α, ε) = −2 ImGR(α, ε) is the spectral function for electrons, andµ is the chemical
potential. In equilibrium, the electrons are distributed according to the Fermi–Dirac function,
f (X, ε)→ f0(ε) = [e(ε−µ)/kBT +1]−1, while thermal phonons have the Planck distribution,
Nq → N0(h̄ωq) = [eh̄ωq/kBT − 1]−1.

In the non-equilibrium situation, the above distribution functions for electrons and
phonons are of course modified. The retarded and advanced Green’s functions preserve
their form, while the kinetic properties are determined by the Keldysh Green’s function.
In our case of a SAW propagating along a uniform channel, the distribution of acoustical
phonons can be described as

Nq = N0(h̄ωq)+N δq,q0 N ≡ UV0/h̄s
2q0 (17)

whereU is the SAW intensity andq0 = (q0, 0, 0) is the wave vector of the phonon beam.
In the following, it is assumed that the temperature is low enough that the non-equilibrium
phonons dominate, in which case

N � 1, N0(h̄ωq0). (18)

Consequently, thermal phonons are neglected, and only the second term of (17) enters the
equations.

The electron Keldysh Green’s function represents the dynamics of the electron system
and is found from the kinetic equation. In the case of a weakly interacting, dilute system,
the gradient approximation is used, and [21]

∂G−1
0

∂X

∂GK

∂k
− ∂G

−1
0

∂k

∂GK

∂X
= 6KA− 0GK (19)

where0 = −2 Im6R is the finite broadening of electronic excitations and, within the
uniform channel,G−1

0 = ε− h̄2k2/2m∗ −En +µ. The kinetic equation can thus be written
in terms of the collision integralI (X, α, ε) as

∂

∂X
GK(X, α, ε) = m∗

h̄2k
I (X, α, ε) (20)

I (X, α, ε) = 6K(X, α, ε)A(α, ε)− 0(α, ε)GK(X, α, ε). (21)

After the electron Keldysh Green’s function has been derived from the differential equation
(20), the electronic current in the channel is found from

Idc = ieh̄

m

∑
n

∫
dk dε kGK(X, α, ε). (22)

The electron self-energy, as well as the collision integral, can be divided into two parts
originating from the electron–phonon interaction and the impurity scattering, respectively:

6̂ = 6̂ph+ 6̂ imp

I (X, α, ε) = I ph(α, ε)+ I imp(X, α, ε).
(23)

Note that the impurity contribution to the collision integral depends onX, while for the
phonon coupling this is not the case in the lowest-order approximation (see sections 3.1 and
3.2). In the following analysis, we restrict ourselves to the low-intensity case. Consequently,
it is assumed that the system is driven slightly out of equilibrium, in which case we can
write

GK = Geq
K +1GK 1GK(X, α, ε)� G

eq
K . (24)

As will be demonstrated in section 3.2, the impurity collision integral in the linear-in-1GK

approximation can be written as

I imp(X, α, ε) = −0imp(n, ε)1GK(X, α, ε) (25)
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where0imp ≡ −2 Im6
imp
R . The kinetic equation (20) then reduces to

∂

∂X
1GK = m

h̄2k

[
I ph(α, ε)− 0imp(n, ε)1GK

]
, (26)

with the general solution

1GK = I ph(α, ε)

0imp(n, ε)
+ χ(α, ε)e−0imp(n,ε)X/h̄2k (27)

where the functionχ(α, ε) must be found from the boundary conditions. AtX = −L/2
(X = L/2), all the right-moving (left-moving) electrons withk > 0 (k < 0 ) originate from
the left (right) reservoir and thus have an equilibrium distribution. Consequently the actual
boundary conditions are

1GK(X = −L/2, α, ε) = 0 k > 0

1GK(X = L/2, α, ε) = 0 k < 0
(28)

from which the functionχ(α, ε) is found. The time average of the current must be constant
throughout the conductor, and so for symmetry reasons we choose to calculate it in the
middle of the channel, whereX = 0, and

1GK |X=0 = I ph

0imp
(1− e−m0

impL/2h̄p). (29)

The current can now finally be written as

Idc = ieL

2h̄

∫ ∞
0

dk
∫ ∞
−∞

dε
∑
n

η(α, ε)J ph(n, k) (30)

J ph(n, k) ≡ [I ph(n, k, ε)− I ph(n,−k, ε)]
where

η(α, ε) ≡ 2h̄p

Lm∗0imp(n, ε)

[
1− e−Lm

∗0imp(n,ε)/2h̄p
]

(31)

is a damping factor due to the finite impurity relaxation rate. This damping can be
expressed in terms of the effective mean free path in the one-dimensional channelleff(n, ε) =
h̄p/m∗0imp(n, ε) as

η = (2leff/L)(1− e−L/2leff). (32)

In the ballistic limit leff � L, η → 1 and there is no damping from impurity scattering,
while in the opposite limit of strong relaxation,leff � L, the damping goes as 2leff/L.

In the lowest Born approximation (see equation (45) below),leff is related to the 2D bulk
mean free path,lB , as leff = lB(pd/2h̄). In our system, the most important participating
electrons belong to the upper transverse mode and have an energy close to the Fermi level.
The longitudinal electron wave vectork = p/h̄ of those electrons is small and is in fact of
the order of the phonon wave vector. Thus the productpleff/h̄ can be much less than one,
which leads to the inequalityleff � lB . Consequently, even though the bulk mean free path
may be comparable withL, the effective mean free pathin the quantum wire can be less
thanL.
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a)

��
��
��
��

b) c)

Figure 2. Feynman diagrams for (a) the lowest order in the electron–phonon contribution to the
electron self-energy, (b) a typical diagram for impurity renormalization of the electron–phonon
vertex, and (c) the impurity contribution to the self-energy in the first Born approximation.

3.1. Phonon self-energies and the collision integral

Formula (29) includes self-energies and collision integrals which are discussed in this
section.

Let us start with the electron–phonon interaction. In the weakly interacting case of
present interest, the self-energy is calculated to the lowest order according to the diagram in
figure 2(a). The internal electron line in this diagram represents a Green’s function which is
dressed by impurity scattering. Using (18) and (24), we arrive at the following expression
for the electron self-energies (appendix A):

6
ph
R (α, ε) = N

∑
β,±
|W̃αβ(±q0)|2GR(β, ε∓)

6
ph
K (α, ε) = −iN

∑
β,±

[
1− 2f0(ε∓)

] |W̃αβ(±q0)|2A(β, ε∓)
(33)

whereω0 ≡ ωq0 is the SAW frequency,ε± ≡ ε ± h̄ω0, while W̃αβ(±q0) is the electron–
phonon vertex, renormalized by the impurities (it has the same matrix structure as the bare
one because impurity scattering is elastic). The electron–phonon collision integral is then
found from (21) and (33) as

Iph(α, ε) = −i 2NA(α, ε)
∑
β,±

[
f0(ε)− f0(ε∓)

] |W̃αβ(±q0)|2A(β, ε∓). (34)

The electron–phonon coupling matrix̃Wαβ(q0), appearing in (33) and (34), includes the
matrix elements

〈α|eiq0·r|β〉 = 1

L

∫
d3r |ϕ(z)|2χ∗n (y)χm(y)ei(p−k)xeiq0·r (35)

whereα = (n, k), β = (m, p), andϕ(z) is the part of the electron wave function confining
the motion in thez-direction. Sinceq0 = (q0, 0, 0), the integration over theyz-plane leads
to the conservation of the quantum channel index. In principle, thex-integration should be
performed over the whole conductor, not only in the uniform wire, and so thex-dependence
of k or p should be taken into account appropriately. Such a treatment would lead to a finite
smearing of delta-functions for momentum conservation. In the experiments of reference
[11], the channel was actually a quantum point contact which was shorter than the phonon
wavelength. Therefore, the smearing should be taken into account in a corresponding theory.
In our model, on the other hand, we assume for simplicity that the phonon wavelength is
much smaller than the length of the uniform channel,q0L � 1. Consequently, the matrix
elements are approximated as

〈α|eiq0·r|β〉 ≈ δm,nδp,k−q0. (36)

The renormalization of the electron–phonon vertex by impurity scattering (figure 2(b)) is
known to be unimportant atqleff � 1. This is the case for the energy range far enough
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from the maximum in the acoustoelectric current. However, the velocities of the electrons
responsible for the maxima of acoustoelectric current are small, and the above-mentioned
condition can be violated. On the other hand, atp/h̄� l−1

eff � q,

W̃αβ(q) ≈ Wαβ(q)
Dq2

Dq2− iω
(37)

whereD = v2τeff is the diffusion constant for the electrons with the velocityv [25]. In the
vicinities of the maxima the inequalitypleff � h̄ is also not fulfilled, so there is no simple
expression for the renormalized matrix elements. However, we will use equation (37) as an
interpolation formula in the illustrative numerical calculations (see below).

Substituting the matrix elements (37) into (34), the phonon collision integral can finally
be written as

I ph(n, k, ε) = −i 2N |w(q0)|2 D2q4
0

D2q4
0 + ω2

0

A(n, k, ε)
∑
±

[
f0(ε)− f0(ε±)

]
A(n, k±, ε±)

(38)

wherek± ≡ k ± q0.

3.2. Impurity self-energies and the collision integral

Let us turn to the electron–impurity interaction. In the first Born approximation, corres-
ponding to the diagram in figure 2(c),

6̂ imp(α, ε) = ni

V0

∑
β,q

|Vαβ(q)|2Ĝ0(β, ε) (39)

whereni is the density of impurities. In the following we assume that the scattering potential
has a short correlation length compared to the channel lengthL. This is a necessary
assumption for the impurity average technique to be adequate (otherwise the impurities
should instead be taken into account as a modification of the channel geometry). At the
same time we assume that the range is comparable with (or greater than) the channel width.
This leads to the conservation of the channel index during transport and is thus a necessary
condition for a pronounced quantization of conductance to be observed. As a consequence,
the matrix elementVαβ(q) is independent ofq and can be written as

Vαβ(q) = V δnm. (40)

Equation (39) can now be expressed in terms of the bulk 2DEG momentum relaxation time
τB as

6̂ imp(n, ε) = h̄

τB

h̄2

2πm∗d

∫ ∞
−∞

dk Ĝ0(n, k, ε) (41)

whered is the channel width.
The impurity self-energy is important in two different ways in our equations—as a finite

broadening of electronic excitations and as a relaxation mechanism expressed through the
impurity collision integral. The finite broadening appears in the electron Green’s functions
and in the spectral functions that are included in the collision integrals and also in the
expression for the current.

In the calculation of the acoustoelectric current, the relevant momentum for participating
electrons is very small, in fact comparable with the phonon momentum. Consequently, we
are operating very close to the one-dimensional singularities in the density-of-states (1D-
DOS) function, and the perturbation approach that we employ fails. A simple but rather
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Figure 3. 0 = −2 Im6 and the real part Re6 of the impurity-induced self-energy as functions
of ξn ≡ ε−En +µ. All of the energies are measured in units ofξ∗. Curve 1 is the escape rate
0 in the lowest Born approximation according to (45). Curves 2 and 3 show the corresponding
escape rate and real part of the self-energy that result from the self-consistent equation (42).

effective way to treat the problem is to use the so-called self-consistent Born approximation
[26], i.e. to make the replacement̂G0 → Ĝ in equation (41) and then solve it self-
consistently. Such an approach, though neglecting the vertex corrections, yields good
numerical results for the spectral function. By the residue theorem we get

6
imp
R (n, ε) = i sgn[Im6 imp

R (n, ε)]
ξ

3/2
∗√

ξn −6 imp
R (n, ε)

with ξn ≡ ε − En + µ and ξ∗ ≡ (h̄2/τBd
√

2m)2/3. This means that6 imp
R (n, ε) is given as

the complex solution with negative imaginary part of the third-order equation

z3− ξnz2− ξ3
∗ = 0. (42)

The resulting0imp(n, ε) ≡ −2 Im6
imp
R (n, ε) is used as the finite broadening of levels in

our numerical calculations below (figure 3). Atξn � ξ∗ one obtains

0imp(n, ε) ≡ 0∗ = ξ∗
√

3. (43)

From (21) and (41), theX-dependent collision integral for the impurity scattering is
given by

I imp(X, n, k, ε) = ξ
3/2
∗ h̄

π
√

2m

∫ ∞
−∞

dp
[
F(p, k)− F(k, p)]

F(p, k) ≡ 1GK(X, n, p, ε)A(n, k, ε).

(44)

For our problem,A(n, k, ε) is symmetric ink, while this is not the case for1GK(X, n, k, ε).
The dc current inducing1GK must actually, according to (22), be nearly anti-symmetric
in k. Consequently, the first term in (44) gives a small contribution compared with the
second term, and, in the linear relaxation approximation, the first is dropped. The impurity
collision integral thus reduces to (25).
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As a first estimate in the further analytical discussion we take the simplest Lorentzian
broadening corresponding to the lowest Born approximation, in which case

0imp(n, ε) = 2ξ3/2
∗ ξ−1/2

n 2(ξn). (45)

As demonstrated in figure 3, the lowest Born approximation is a good approximation
provided that one is operating far beyond the 1D-DOS singularity, whenξn > 3ξ∗. Close
to the singularity, on the other hand, there is a significant deviation between the lowest and
the self-consistent Born approximations.

4. The case of negligible level broadening

Let us, in a first estimate, neglect the finite broadening of electronic levels, in which case
all spectral functions are treated as delta-functions,A(α, ε) → 2πδ(ε − Eα + µ), and the
energy can be easily integrated out of the expression for the current (30). Substituting the
phonon collision integral (38) and integrating out the energyε, we obtain

Idc = 4π2h̄−1eLN |w(q0)|2
∑
n

∫ ∞
0

dk η(n, k, Ek − µ)

× {[f 0
k − f 0

k−q0
]δ(En,k − h̄ω0− En,k−q0)

+ [f 0
k − f 0

k+q0
]δ(En,k + h̄ω0− En,k+q0)

− [f 0
k − f 0

k+q0
]δ(En,k − h̄ω0− En,k+q0)

− [f 0
k − f 0

k−q0
]δ(En,k + h̄ω0− En,k−q0)} (46)

wheref 0
k ≡ f0(En,k).

The delta-functions of energy appearing in (46) are transformed into delta-functions
with respect tok as

δ(En,k − En,k±q0 ± h̄ω0) = (m∗/h̄2q0)δ(k ± k±)
k± ≡ (q0/2)± (m∗s/h̄).

(47)

Substituting those relations into (46) and integrating out thek-variable, in the case of
piezoelectric interaction (6) we finally obtain the following simple expression for the
acoustoelectric current:

Idc = (I0/2)(f
0
k+ − f 0

k−)
∑
±
θ(±k−)(η+ ± η−) (48)

whereη± ≡ η(n, k±, En,k± − µ), while

I0 ≡ 2π2eLm∗UM2/ρh̄3ω3
0 (49)

is the peak current in a ballistic channel (see below).
Sinceleff strongly depends on the electron velocity, when the relaxation from impurity

scattering is significant, a finite current persists fork− < 0, corresponding toω < ωth.
Indeed, since the velocity of participating electrons is very small and soleff � lB , the
channel should be relatively short and extremely clean to observe any sign of a cut-off. As
a first approximation, the condition for suppression of the subthreshold current reads

leff

L
∼ m∗s2τBd

2Lh̄
> 1. (50)

The dependencies of the peak current on the quasi-Fermi level for three different values of
the bulk relaxation time andL = 0.5 µm are shown in figure 4. ForτB = 10−10 s, there are
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Figure 4. The peak value of the phonon-induced current as a function of the reduced phonon
energyωq/ωth, whereωth = 2m∗s2/h̄ is the threshold value. Three different cases are shown:
curves 1, 2, and 3 correspond toτBωth = 2.95, 29.5, and 147.5, respectively. The current is
measured in units of the threshold current peak. All of the curves are for a channel of length
L = 0.5 µm andd ∼ 80 nm.

no signs of a cut-off. AtτB = 10−9 s a weak structure appears, while atτB = 5× 10−9 s
one can clearly observe suppression of the subthreshold current.

There are two different limiting cases which are particularly interesting. The first one
is described by the inequalityleff � L, i.e. the case of a significant scattering by the short-
range potential. In this case the estimates for the current peak below and above the threshold
(ωth) are of the same order. The current is proportional toτB and isL-independent. Within
the lowest Born approximation,

Idc ≈ I0dτB

Lωth

[
f 0
k+ − f 0

k−
]

1

2
(ω2

0 + ω2
th) ω0 > ωth

ω0ωth ω0 < ωth.
(51)

This result basically agrees with the one obtained in reference [14] with the help of the
Boltzmann equation. In the self-consistent Born approximation the energy dependence of
η is reduced, and the subthreshold current is consequently reduced as compared with the
above-threshold case.

The second limit isleff � L. In this case the current above the threshold is simply

Idc ≈ I0
[
f 0
k+ − f 0

k−
]
. (52)

This is the same result as was obtained for a uniform ballistic channel in reference [16]. The
subthreshold current, in contrast, is in this caseinversely proportionalto τB and proportional
to L2:

Idc ≈ I0Lωth

dτB

ω0ωth

[ω2
0 − ω2

th]2

[
f 0
k+ − f 0

k−
]
. (53)

The result agrees with the estimate in reference [27] obtained for the case whereL � lB .
The above formula has a singularity atω0 = ωth. Close to this threshold value, the
expression is not valid, sinceleff ∝ p/h̄, and so the initial assumption|k−leff| � 1, which
was used in the series expansion ofη, breaks down.



Giant oscillations of acoustoelectric current 8393

0.994 0.996 0.998 1.000 1.002
0.000

0.020

0.040

0.060

a)
1

Id
c/

Io

2

En/Ef
0.995 0.997 0.999 1.001

0.0000

0.0020

0.0040

0.0060

Id
c/

Io

b)

En/Ef

1

2

3

0.980 0.984 0.988 0.992 0.996 1.000 1.004
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

c)

En/Ef

1

2

Id
c/

Io

Figure 5. The acoustoelectric current as a function of the reduced transverse energyEn/Ef
(monitored by the gate voltage). Panels (a), (b), and (c) correspond toτB = 10−8 s
(ωthτB = 295), 10−9 s (29.5), and 10−10 s (2.95), respectively. The current is plotted in
units I0 ≡ 2π2eLm∗UM2/ρh̄3ω3

0. The curves 1 are the results from the semi-classical model
(48) while curves 2 are the quantum mechanical results including both the level broadening and
the vertex corrections. In panel (b) we also demonstrate the role of vertex corrections by means
of curve 3, which represents the current calculated without those corrections.

5. The effect of level broadening

In figure 5 we have plotted the results of the quantum mechanical numerical calculations
of (30), where the effect of level broadening and renormalization of the electron–phonon
vertices are taken into account. The curves show the acoustoelectric current as a function
of transverse energyEn. In real experiments,En is directly controlled by the gate voltage,
and consequently the curves give a picture ofIdc versus gate voltage for our model system.
At zero temperature, a phonon-induced current arises when the levelEn is within a layer of
width h̄ω0 around the Fermi level. Three different cases are considered, corresponding to
τB = 10−10, 10−9, and 10−8 s, and the calculated acoustoelectric current is compared with
the corresponding classical result (48).

The level broadening has the effect that the current peak is clearly smeared out, and its
maximum is significantly reduced in the strongly interacting case. As is demonstrated by
means of one of the curves, the impurity renormalization of electron–phonon vertices leads
to an additional, relatively small reduction of the peak current.
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6. Conclusions

In conclusion, we have shown that the acoustoelectric current in a quasi-one-dimensional
quantum channel is extremely sensitive to the scattering from random impurity centres
inside the channel. The very low electron velocity of participating electrons is responsible
for the fact that the effective mean free path is much less than the bulk mean free path
in this problem. Consequently, any sign of a current threshold at the phonon frequency
threshold valueωth = q0s = 2m∗s2/h̄, as in a uniform ballistic channel, is only expected
for extremely clean and short channels. The profile of the quantum oscillations of the
acoustoelectric current is also very sensitive to the level broadening. The peaks are damped
and smeared out because of this quantum effect.
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Appendix A. The electron–phonon self-energy

In the triangular representation (10), the(i, j)-component of the first-order electron–phonon
self-energy matrix, as represented by the diagram in figure 2(a), is given by [21]

6̂
ph
ij (α, ε) = i

∑
q,β

|Wαβ(q)|2
∫

dε1

2π

∑
i ′,j ′,l,l′

T lii ′Ĝi ′j ′(β, ε − ε1)D̂ll′(q, ε1)T̃ l
′

j ′j (A1)

whereT lii ′(α, β, ε − ε1) is the impurity-induced contribution to the vertex part. In the case
of elastic scattering from static impurities, the Keldysh matrix structure is conserved and
T lii ′(α, β, ε−ε1) ∝ γ lii ′ whereγ 1

ij = γ̃ 2
ij = 2−1/2δij , γ

2
ij = γ̃ 1

ij2
−1/2σxij , andσx is thex-directed

Pauli matrix. Having in mind the fact that we are interested only in the contribution ofreal
non-equilibrium phonons in the lowest order in the electron–phonon interaction, we can
absorbT lii ′(α, β, ωq) into the renormalized coupling constant|W̃αβ |2. With the substitution
of the phonon Green’s functions from (16) and integration over the internal energyε1, we
arrive at

6
ph
R (α, ε) =

∑
q,β

|W̃αβ(q)|2
{
GR(β, ε−)

[
1+Nq − f (ε−)

] +GR(β, ε+)
[
N−q + f (ε+)

]}
(A2a)

6
ph
K (α, ε) = −i

∑
q,β

|W̃αβ(q)|2
{
A(β, ε−)

[
1+Nq − f (ε−)− 2Nqf (ε−)

]
+ A(β, ε+)

[
N−q − f (ε+)− 2N−qf (ε+)

]}
(A2b)

with ε± ≡ ε ± h̄ωq. Since the acoustically induced effects are determined by thenon-
equilibrium phonons, we can substituteNq = N δq,q0

. In this way we arrive at (33).
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